Questions about this topic? Sign up to ask in the talk tab.
Difference between revisions of "Bitwise math/Operators/XOR"
From NetSec
GertieUbpgdd (Talk | contribs) |
GertieUbpgdd (Talk | contribs) |
||
Line 4: | Line 4: | ||
==== XOR rules ==== | ==== XOR rules ==== | ||
− | {{:Bitwise math/ | + | {{:Bitwise math/Operators/XOR/rules}} |
==== XOR properties ==== | ==== XOR properties ==== | ||
− | {{:Bitwise math/ | + | {{:Bitwise math/Operators/XOR/properties}} |
==== XOR example ==== | ==== XOR example ==== | ||
− | {{:Bitwise math/ | + | {{:Bitwise math/Operators/XOR/example}} |
==== XOR logic table ==== | ==== XOR logic table ==== | ||
− | {{:Bitwise math/ | + | {{:Bitwise math/Operators/XOR/logic table}} |
Latest revision as of 06:25, 19 July 2012
- back to Bitwise math
XOR rules
- XOR determines which bits differ in the two binary numbers used as operands.
- 1 xor 1 = 0
- 1 xor 0 = 1
- 0 xor 0 = 0
XOR properties
- Anything xor'd with itself results in 0
- Anything xor'd with 0xF is the same as a "not"
- Anything xor'd with zero results in itself
XOR example
- Example: A xor F = 5
Operation Hexadecimal Binary comment
xor A
F
1010
1111
The first and third bits are true.
The first, second, third, and fourth bits are true.
= 5 0101 The second and fourth bits are true in ONLY one instance as opposed to two.
- The 8’s and 2's placeholders are the same so they return 0.
- The 4’s and 1’s placeholders are different, therefore return true.
XOR logic table
XOR 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 0 1 2 3 4 5 6 7 8 9 A B C D E F 1 1 0 3 2 5 4 7 6 9 8 B A D C F E 2 2 3 0 1 6 7 4 5 A B 8 9 E F C D 3 3 2 1 0 7 6 5 4 B A 9 8 F E D C 4 4 5 6 7 0 1 2 3 C D E F 8 9 A B 5 5 4 7 6 1 0 3 2 D C F E 9 8 B A 6 6 7 4 5 2 3 0 1 E F C D A B 8 9 7 7 6 5 4 3 2 1 0 F E D C B A 9 8 8 8 9 A B C D E F 0 1 2 3 4 5 6 7 9 9 8 B A D C F E 1 0 3 2 5 4 7 6 A A B 8 9 E F C D 2 3 0 1 6 7 4 5 B B A 9 8 F E D C 3 2 1 0 7 6 5 4 C C D E F 8 9 A B 4 5 6 7 0 1 2 3 D D C F E 9 8 B A 5 4 7 6 1 0 3 2 E E F C D A B 8 9 6 7 4 5 2 3 0 1 F F E D C B A 9 8 7 6 5 4 3 2 1 0